Mathematical Modeling and Data Analysis of NMR Experiments using Hyperpolarized 13C Metabolites

نویسندگان

  • Guilhem Pagès
  • Philip W. Kuchel
چکیده

Rapid-dissolution dynamic nuclear polarization (DNP) has made significant impact in the characterization and understanding of metabolism that occurs on the sub-minute timescale in several diseases. While significant efforts have been made in developing applications, and in designing rapid-imaging radiofrequency (RF) and magnetic field gradient pulse sequences, very few groups have worked on implementing realistic mathematical/kinetic/relaxation models to fit the emergent data. The critical aspects to consider when modeling DNP experiments depend on both nuclear magnetic resonance (NMR) and (bio)chemical kinetics. The former constraints are due to the relaxation of the NMR signal and the application of 'read' RF pulses, while the kinetic constraints include the total amount of each molecular species present. We describe the model-design strategy we have used to fit and interpret our DNP results. To our knowledge, this is the first report on a systematic analysis of DNP data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic isotope effects significantly influence intracellular metabolite [ superscript 13 ] C labeling patterns and flux determination

Rigorous mathematical modeling of carbon-labeling experiments allows estimation of fluxes through the pathways of central carbon metabolism, yielding powerful information for basic scientific studies as well as for a wide range of applications. However, the mathematical models that have been developed for flux determination from 13C labeling data have commonly neglected the influence of kinetic...

متن کامل

Class selection of amino acid metabolites in body fluids using chemical derivatization and their enhanced 13C NMR.

We report a chemical derivatization method that selects a class of metabolites from a complex mixture and enhances their detection by 13C NMR. Acetylation of amines directly in aqueous medium with 1,1'-13C(2) acetic anhydride is a simple method that creates a high sensitivity and quantitative label in complex biofluids with minimal sample pretreatment. Detection using either 1D or 2D 13C NMR ex...

متن کامل

Kinetic Modeling of Hyperpolaized [1-13C]Pyruvate Metabolism in Blood

INTRODUCTION Dynamic Nuclear Polarization (DNP) of metabolically active 13C-labelled substances has been reported as a method of generating MR images of in vivo cellular metabolism [1] and hence has the potential to detect aggressive cancers that exhibit heightened metabolism [2]. By injecting active, hyperpolarized 13C metabolites such as pyruvate, it is possible to visualize their transformat...

متن کامل

Quantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations

In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...

متن کامل

Dynamic Interleaved Imaging of Hyperpolarized Metabolites for Lactate Dehydrogenase Kinetics

INTRODUCTION Dynamic Nuclear Polarization (DNP) of metabolically active 13C-labelled substrates has been reported as a method of generating MR images of in vivo cellular metabolism [1] and hence has the potential to characterize aggressive cancers that exhibit heightened energy metabolism non-invasively[2]. In a phenomenon known as the Warbrug effect, aggressively proliferating tumor cells pref...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013